
 Introduction
 There are three common sets of standards that high school computer science teachers in Arizona engage with:

 - The Arizona Computer Science Standards developed by the Arizona Department of Education in 2018
 - The Arizona CTE Software and App Design Standards developed by the Arizona Department of Education and

 updated in 2017
 - The AP Computer Science Principles (AP CSP) Framework developed by the College Board and updated in 2020

 This document illustrates how these standards overlap and are aligned, and illuminate areas where there may be holes
 that require supplemental instruction. This document was prepared by current Arizona educators who teach computer
 science courses that incorporate the CTE Software & App Design standards, with support from the Arizona Science Center
 and the Arizona Computer Science Teachers Association (CSTA-Arizona)

 In this document, the Arizona CTE Software and App Design Standards are presented in order along with the Arizona
 Computer Science and AP CSP standards they align to. This may be useful for teachers who have already aligned a
 course to the CTE standards and want to see how this course is also mapped to the Computer Science standards or AP
 CSP framework.

 An appendix is offered at the end of this document with guidance and next-steps for teachers who would like to continue
 aligning their courses between these sets of standards.

 1

https://www.azed.gov/standards-practices/standards-computer-science
https://www.azed.gov/sites/default/files/2020/09/SoftwareandAppDesignTSs11020200.pdf
https://apcentral.collegeboard.org/pdf/ap-computer-science-principles-course-and-exam-description.pdf?course=ap-computer-science-principles

 Standard Alignment
 STANDARD 1.0 APPLY
 PROBLEM-SOLVING AND CRITICAL
 THINKING SKILLS

 Arizona Computer Science Standards AP CSP Framework

 1.1 Establish objectives and outcomes for a
 task

 HS.AP.PD.2 Use team roles and collaborative tools to
 design and iteratively develop computational artifacts.

 CRD-2.B Explain how a program or code segment
 functions.
 CRD-2.C Identify input(s) to a program. 
 CRD-2.D Identify output(s) produced by a program.

 1.2 Explain the process of decomposing a large
 programming problem into smaller, more
 manageable procedures

 HS.DA.CVT.1 Create interactive data
 visualizations using software tools to help others better
 understand real-world phenomena.

 HS.AP.M.1 Decompose problems into smaller
 components using constructs such as procedures,
 modules, and/or objects.

 CRD-2.B Explain how a program or code segment
 functions
 AAP-3.B Explain how the use of procedural abstraction
 manages complexity in a program

 1.3 Explain “visualizing” as a problem-solving
 technique prior to writing code

 HS.DA.CVT.1 Create interactive data
 visualizations using software tools to help others better
 understand real-world phenomena.

 HS.AP.PD.3 Document design decisions using text,
 graphics, presentations, and/or demonstrations in the
 development of complex
 Programs.

 CRD-2.E Develop a program using a development
 process
 CRD-2.G Describe the purpose of a code segment or
 program by writing documentation.
 AAP-2.A Express an algorithm that uses sequencing
 without using a programming language. 
 AAP-2.B Represent a step-by-step algorithmic process
 using sequential code statements.
 AAP-2.J Express an algorithm that uses iteration without
 using a programming language.

 1.4 Describe problem-solving and
 troubleshooting strategies applicable to
 software development

 HS.CS.T.1 Develop guidelines that convey
 systematic troubleshooting strategies that others can
 use to identify and fix errors.

 CRD-2.I For errors in an algorithm or program:
 a. Identify the error. 
 b. Correct the error
 CRD-2.J Identify inputs and corresponding expected
 outputs or behaviors that can be used to check the
 correctness of an algorithm or program.
 AAP-2.L Compare multiple algorithms to determine if
 they yield the same side effect or result

 2

 STANDARD 2.0 RECOGNIZE
 SECURITY ISSUES

 Arizona Computer Science Standards AP CSP Framework

 2.1 Identify common computer threats (e.g.,
 viruses, phishing, suspicious email, social
 engineering, spoofing, identity theft, and
 spamming)

 HS.NI.C.1 Describe how sensitive data can be affected
 by malware and other attacks

 IOC-2.B Explain how computing resources can be
 protected and can be misused.
 IOC-2.C Explain how unauthorized access to computing
 resources is gained

 2.2 Describe potential vulnerabilities in software
 (e.g., OWASP’s Top 10)

 HS.NI.C.1 Describe how sensitive data can be affected
 by malware and other attacks

 HS.NI.C.3Compare various security
 measures, considering tradeoffs between the usability
 and security of a computing system.

 IOC-2.B Explain how computing resources can be
 protected and can be misused.
 IOC-2.C Explain how unauthorized access to computing
 resources is gained

 2.3 Identify procedures to maintain data
 integrity and security (e.g., lock the screen,
 delete unrecognized emails, use trustworthy
 thumb drives, and use approved software)

 HS.NI.C.1 Describe how sensitive data can be affected
 by malware and other attacks

 HS.NI.C.2Recommend security measures to address
 various scenarios based on factors such as efficiency,
 feasibility, and ethical impact

 IOC-1.F Explain how the use of computing can raise legal
 and ethical concerns.
 OC-2.B Explain how computing resources can be
 protected and can be misused.

 2.4 Explain best practices to maintain integrity
 and security in software development (e.g.,
 encryption, hashing, and digital signatures)

 HS.NI.C.3Compare various security
 measures, considering tradeoffs between the usability
 and security of a computing system.

 IOC-1.F Explain how the use of computing can raise
 legal and ethical concerns.

 2.5 Describe methods for sanitizing user input
 to prevent issues (e.g., buffer overflows and
 SQL injection)

 HS.NI.C.2Recommend security measures to address
 various scenarios based on factors such as efficiency,
 feasibility, and ethical impact

 HS.NI.C.3Compare various security
 measures, considering tradeoffs between the usability
 and security of a computing system.

 IOC-2.B Explain how computing resources can be
 protected and can be misused.

 2.6 Explain the CIA (confidentiality, integrity,
 and availability) triad

 HS.NI.C.1 Describe how sensitive data can be affected
 by malware and other attacks

 IOC-1.F Explain how the use of computing can raise
 legal and ethical concerns.

 3

 2.7 Explain how software defects relate to
 software security (e.g., buffer overflows and
 cross-site scripting)

 HS.NI.C.2Recommend security measures to address
 various scenarios based on factors such as efficiency,
 feasibility, and ethical impact

 HS.NI.C.3Compare various security
 measures, considering tradeoffs between the usability
 and security of a computing system.

 IOC-2.B Explain how computing resources can be
 protected and can be misused.
 IOC-2.C Explain how unauthorized access to computing
 resources is gained.

 STANDARD 3.0 EXAMINE LEGAL
 AND ETHICAL ISSUES RELATED TO
 INFORMATION TECHNOLOGY

 Arizona Computer Science Standards AP CSP Framework

 3.1 Explore intellectual property rights including
 software licensing and software duplication
 [e.g., Digital Millennium Copyright Act (DMCA),
 software licensing, and software duplication]

 HS.IC.SLE.1Explain the beneficial and harmful effects
 that intellectual property laws can have on innovation.

 IOC-2.B Explain how computing resources can be
 protected and can be misused.
 IOC-1.F Explain how the use of computing can raise
 legal and ethical concerns.

 3.2 Compare and contrast open source and
 proprietary systems in relation to legal and
 ethical issues (e.g., data pricing, use of public
 and private networks, social networking,
 industry-related data, and data piracy)

 HS.NI.C.3Compare various security
 measures, considering tradeoffs between the usability
 and security of a computing system.

 HS.IC.SI.1Analyze the impact of
 collaborative tools and methods that increase social
 connectivity.

 HS.IC.SLE.2 Explain the privacy concerns related to the
 collection and generation of data through automated
 processes that may not be evident to users.

 HS.IC.SLE.3 Evaluate the social and economic
 implications of privacy in the context of safety, law, or
 ethics.

 IOC-1.F Explain how the use of computing can raise
 legal and ethical concerns.

 3.3 Identify issues and regulations affecting
 computers, other devices, the internet, and
 information privacy (e.g., HIPAA, COPPA,
 CISPA, FERPA, PCI, GDPR, and data brokers)

 HS.DA.S.2 Evaluate the tradeoffs in how and where
 data is stored.

 HS.IC.SLE.1Explain the beneficial and harmful effects
 that intellectual property laws can have on innovation.

 HS.IC.SLE.2 Explain the privacy concerns related to the

 IOC-1.F Explain how the use of computing can raise
 legal and ethical concerns.

 4

 collection and generation of data through automated
 processes that may not be evident to users.

 HS.IC.SLE.3 Evaluate the social and economic
 implications of privacy in the context of safety, law, or
 ethics.

 STANDARD 4.0 UTILIZE PRIMITIVE
 DATA TYPES AND STRINGS IN
 WRITING PROGRAMS

 Arizona Computer Science Standards AP CSP Framework

 4.1 Declare numeric, Boolean, character, string
 variables, and float and double

 HS.DA.S.1 Translate between different bit
 representations of real-world phenomena, such as
 characters, numbers, and images.

 AAP-2.F For relationships between Boolean values:
 a. Write expressions using logical operators. 
 b. Evaluate expressions that use logic operators.

 4.2 Choose the appropriate data type for a
 given situation

 HS.DA.S.2 Evaluate the tradeoffs in how and where
 data is stored.

 DAT-2.A Describe what information can be extracted
 from data.
 DAT-2.D Extract information from data using a
 program.

 4.3 Identify the correct syntax and usage for
 constants and variables in a program

 HS.AP.A.1 Create prototypes that use algorithms for
 practical intent, personal expression, or to address a
 societal issue

 HS.AP.V.1 Use lists to simplify solutions, generalizing
 computational problems instead of repeatedly using
 simple variables.

 HS.AP.C.1 Justify the selection of specific control
 structures and explain the benefits and drawbacks of
 choices made, when tradeoffs involve readability and
 program performance.

 AAP-1.A Represent a value with a variable
 AAP-1.B Determine the value of a variable as a result
 of an assignment.  

 4.4 Identify the correct syntax and safe
 functions for operations on strings, including
 length, substring, and concatenation

 AAP-1.C Represent a list or string using a variable.

 5

 4.5 Explain complications of storing and
 manipulating data (i.e., the Big-O notation for
 analyzing storage and efficiency concerns, etc.)

 HS.DA.S.2 Evaluate the tradeoffs in how and where
 data is stored.

 HS.DA.IM.1 Analyze computational models to better
 understand real-world phenomena.

 DAT-1.D Compare data compression algorithms to
 determine which is best in a particular context.
 DAT-2.C Identify the challenges associated with
 processing data.
 DAT-2.E Explain how programs can be used to gain
 insight and knowledge from data. 

 4.6 Research industry relevant programming
 languages (i.e., Java, JavaScript, Python, etc.)

 CRD-2.H Acknowledge code segments used from
 other sources

 STANDARD 5.0 PERFORM BASIC
 COMPUTER MATHEMATICS IN
 INFORMATION TECHNOLOGY

 Arizona Computer Science Standards AP CSP Framework

 5.1 Apply basic mathematics to hardware (e.g.,
 bits, bytes, kilobytes, megabytes, gigabytes,
 and terabytes

 HS.CS.HS.1 Describe levels of abstraction and
 interactions between application software, system
 software, and hardware layers.

 HS.DA.S.1 Translate between different bit
 representations of real-world phenomena, such as
 characters, numbers, and images.

 DAT-1.A Explain how data can be represented using
 bits.
 DAT-1.B Explain the consequences of using bits to
 represent data.

 5.2 Use binary to decimal, decimal to
 hexadecimal, hexadecimal to decimal, binary to
 hexadecimal, and binary to hexadecimal
 conversions to solve hardware and software
 problems

 HS.CS.HS.1 Describe levels of abstraction and
 interactions between application software, system
 software, and hardware layers.

 HS.DA.S.1bTranslate between different bit
 representations of real-world phenomena, such as
 characters, numbers, and images.

 DAT-1.C For binary numbers:
 a. Calculate the binary (base 2) equivalent of a
 positive integer (base 10) and vice versa. 
 b. Compare and order binary numbers.

 5.3 Identify and correctly use arithmetic
 operations applying the order of operations
 (precedence) with respect to programming

 HS.AP.A.1 Create prototypes that use algorithms for
 practical intent, personal expression, or to address a
 societal issue

 AAP-2.C Evaluate expressions that use arithmetic
 operators.

 5.4 Interpret and construct mathematical
 formulas

 AAP-2.C Evaluate expressions that use arithmetic
 operators.

 5.5 Identify correct and problematic uses of
 integers, floating-point numbers, and fixed-point
 numbers in arithmetic

 AAP-2.C Evaluate expressions that use arithmetic
 operators.

 6

 STANDARD 6.0 UTILIZE
 CONDITIONAL STRUCTURES IN
 WRITING PROGRAMS

 Arizona Computer Science Standards AP CSP Framework

 6.1 Use the correct syntax for decision
 statements (e.g., if/else, if, and switch case)

 HS.AP.C.1 Justify the selection of specific control
 structures and explain the benefits and drawbacks of
 choices made, when tradeoffs involve readability and
 program performance

 HS.AP.C.2 Use events that initiate
 instructions to design and iteratively develop
 computational artifacts

 HS.AP.PD.1 Evaluate and refine computational artifacts
 to make them more usable and accessible.

 AAP-2.F For relationships between Boolean values:
 a. Write expressions using logical operators. 
 b. Evaluate expressions that use logic operators.
 AAP-2.H For selection:
 a. Write conditional statements. 
 b. Determine the result of conditional statements. 
 AAP-2.I For nested selection:
 a. Write nested conditional statements
 b. Determine the result of nested conditional
 statements.

 6.2 Compare values using relational operators
 (e.g., =, >, <, >=, <=, and not equal)

 HS.AP.C.1 Justify the selection of specific control
 structures and explain the benefits and drawbacks of
 choices made, when tradeoffs involve readability and
 program performance

 AAP-2.E For relationships between two variables,
 expressions, or values:
 a. Write expressions using relational operators. 
 b. Evaluate expressions that use relational
 operators. 
 AAP-2.F For relationships between Boolean values:
 a. Write expressions using logical operators. 
 b. Evaluate expressions that use logic operators.
 AAP-2.H For selection:
 a. Write conditional statements. 
 b. Determine the result of conditional statements. 

 6.3 Evaluate Boolean expressions (e.g., AND,
 OR, NOT, NOR, and XOR)

 HS.AP.C.1 Justify the selection of specific control
 structures and explain the benefits and drawbacks of
 choices made, when tradeoffs involve readability and
 program performance

 AAP-2.F For relationships between Boolean values:
 a. Write expressions using logical operators. 
 b. Evaluate expressions that use logic operators.
 AAP-2.H For selection:
 a. Write conditional statements. 
 b. Determine the result of conditional statements. 

 6.4 Use the correct nesting for decision
 structures

 HS.AP.C.1 Justify the selection of specific control
 structures and explain the benefits and drawbacks of
 choices made, when tradeoffs involve readability and
 program performance

 AAP-2.I For nested selection:
 a. Write nested conditional statements
 b. Determine the result of nested conditional
 statements.

 STANDARD 7.0 UTILIZE ITERATIVE
 STRUCTURES IN WRITING
 PROGRAMS

 Arizona Computer Science Standards AP CSP Framework

 7

 7.1 Identify various types of iteration structure
 (e.g., while, for, for-each, and recursion)

 HS.AP.V.1 Use lists to simplify solutions, generalizing
 computational problems instead of repeatedly using
 simple variables.

 HS.AP.C.1 Justify the selection of specific control
 structures and explain the benefits and drawbacks of
 choices made, when tradeoffs involve readability and
 program performance

 AAP-2.G Express an algorithm that uses selection
 without using a programming language.
 AAP-2.J Express an algorithm that uses iteration
 without using a programming language. 

 7.2 Identify how loops are controlled (variable
 conditions and exits)

 HS.AP.V.1 Use lists to simplify solutions, generalizing
 computational problems instead of repeatedly using
 simple variables.

 HS.AP.C.1 Justify the selection of specific control
 structures and explain the benefits and drawbacks of
 choices made, when tradeoffs involve readability and
 program performance

 AAP-2.K For iteration:
 a. Write iteration statements. 
 b. Determine the result or side effect of iteration
 statements

 7.3 Use the correct syntax for nested loops HS.AP.V.1 Use lists to simplify solutions, generalizing
 computational problems instead of repeatedly using
 simple variables.

 HS.AP.C.1 Justify the selection of specific control
 structures and explain the benefits and drawbacks of
 choices made, when tradeoffs involve readability and
 program performance

 AAP-2.I For nested selection:
 a. Write nested conditional statements
 b. Determine the result of nested conditional
 statements.

 7.4 Compute the values of variables involved
 with nested loops

 HS.AP.V.1 Use lists to simplify solutions, generalizing
 computational problems instead of repeatedly using
 simple variables.

 HS.AP.C.1 Justify the selection of specific control
 structures and explain the benefits and drawbacks of
 choices made, when tradeoffs involve readability and
 program performance

 AAP-2.I For nested selection:
 a. Write nested conditional statements
 b. Determine the result of nested conditional
 statements.

 STANDARD 8.0 UTILIZE BASIC DATA
 STRUCTURES IN WRITING
 PROGRAMS

 Arizona Computer Science Standards AP CSP Framework

 8.1 Demonstrate basic uses of arrays including
 initialization, storage, and retrieval of values

 HS.AP.V.1 Use lists to simplify solutions,
 generalizing computational problems instead of
 repeatedly using simple variables.

 AAP-2.N For list operations:
 a. Write expressions that use list indexing and list
 procedures.
 b. Evaluate expressions that use list indexing and list
 procedures.

 8

 AAP-1.D For data abstraction:
 a. Develop data abstraction using lists to store
 multiple elements
 b. Explain how the use of data abstraction manages
 complexity in program code. 

 8.2 Distinguish between arrays and hash maps
 (associative arrays)

 HS.AP.V.1 Use lists to simplify solutions,
 generalizing computational problems instead of
 repeatedly using simple variables.

 8.3 Identify techniques for declaring, initializing,
 and modifying user-defined data types

 HS.AP.V.1 Use lists to simplify solutions, generalizing
 computational problems instead of repeatedly using
 simple variables.

 CRD-2.F Design a program and its user interface. 

 8.4 Identify techniques for declaring, initializing,
 and modifying user-defined data types

 HS.AP.V.1 Use lists to simplify solutions,
 generalizing computational problems instead of
 repeatedly using simple variables.

 CRD-2.F Design a program and its user interface. 

 8.5 Create and use two-dimensional arrays HS.AP.V.1 Use lists to simplify solutions,
 generalizing computational problems instead of
 repeatedly using simple variables.

 8.6 Describe the efficiency of different sorting
 algorithms (e.g., bubble, insertion, and merge)

 HS.DA.IM.1 Analyze computational models to better
 understand real-world phenomena.

 AAP-2.M For algorithms:
 a. Create algorithms.
 b. Combine and modify existing algorithms

 8.7 Describe the efficiency of linear vs. binary
 searches [e.g., O(n) and O(log n)]

 HS.DA.IM.1 Analyze computational models to better
 understand real-world phenomena.

 STANDARD 9.0 IDENTIFY INTERNET
 PROTOCOLS AND OPERATIONS

 Arizona Computer Science Standards AP CSP Framework

 9.1 Explain cloud-based computing and content
 delivery networks

 HS.CS.D.1 Explain how abstractions hide the
 underlying implementation details of computing
 systems embedded in everyday objects.

 HS.NI.C.4 Evaluate the scalability and reliability of
 networks, by describing the relationship
 between routers, switches, servers, topology, and
 addressing.

 CSN-1.D Describe the differences between the
 Internet and the World Wide Web. 
 CSN-1.E For fault-tolerant systems, like the Internet:
 a. Describe the benefits of fault tolerance.
 b. Explain how a given system is fault-tolerant. 
 c. Identify vulnerabilities to failure in a system. 

 9

 9.2 Identify the components and functions of
 the internet (e.g., HTTP, HTTPS, FTP, IP
 addresses, and IMAP)

 HS.NI.NCO.1 Evaluate the scalability and
 reliability of networks, by describing the
 relationship between routers, switches, servers,
 topology, and addressing.

 CSN-1.A Explain how computing devices work
 together in a network. 
 CSN-1.B Explain how the Internet works. 
 CSN-1.C Explain how data are sent through the
 Internet via packets

 9.3 Identify services run by web servers [e.g.,
 scripting languages (client- and server-side
 scripting), databases, and media]

 HS.NI.C.4 Evaluate the scalability and reliability of
 networks, by describing the relationship
 between routers, switches, servers, topology, and
 addressing.

 CSN-1.A Explain how computing devices work
 together in a network. 
 CSN-1.B Explain how the Internet works. 

 9. 4 Identify performance issues (e.g.,
 bandwidth, internet connection types, pages
 loading slowly, resolution, and size graphics)

 HS.NI.C.4 Evaluate the scalability and reliability of
 networks, by describing the relationship
 between routers, switches, servers, topology, and
 addressing.

 CSN-1.A Explain how computing devices work
 together in a network. 
 CSN-1.B Explain how the Internet works. 
 CSN-1.C Explain how data are sent through the
 Internet via packets
 CSN-1.E For fault-tolerant systems, like the Internet:
 a. Describe the benefits of fault tolerance.
 b. Explain how a given system is fault-tolerant. 
 c. Identify vulnerabilities to failure in a system. 

 9.5 Differentiate among shared hosting,
 dedicated server, and virtual private server
 (VPS)

 HS.NI.C.4 Evaluate the scalability and reliability of
 networks, by describing the relationship
 between routers, switches, servers, topology, and
 addressing.

 9.6 Identify Internet of Things (IOT) and
 common communication interfaces (e.g.,
 Bluetooth, NFC, Wi-Fi, and LTE)

 HS.NI.C.4 Evaluate the scalability and reliability of
 networks, by describing the relationship
 between routers, switches, servers, topology, and
 addressing.

 CSN-1.A Explain how computing devices work
 together in a network. 
 CSN-1.B Explain how the Internet works.
 CSN-1.D Describe the differences between the
 Internet and the World Wide Web. 

 STANDARD 10.0 APPLY
 CLIENT-SIDE INTERNET
 SOFTWARE

 Arizona Computer Science Standards AP CSP Framework

 10.1 Identify key components and functions of
 internet and web specialty browsers

 CSN-1.A Explain how computing devices work
 together in a network. 
 CSN-1.B Explain how the Internet works.
  CSN-1.D Describe the differences between the
 Internet and the World Wide Web. 

 10

 10.2 Use client collaboration sources/platforms
 (e.g., GitHub, Google Drive, Dropbox, JSFiddle,
 and browser developer tools)

 HS.AP.PD.2 Use team roles and collaborative tools to
 design and iteratively develop computational
 artifacts.

 HS.IC.SI.1 Analyze the impact of
 collaborative tools and methods that increase social
 connectivity.

 CRD-2.H Acknowledge code segments used from
 other sources. 

 10.3 Analyze remote computing tools and
 services and their application

 HS.IC.SI.1 Analyze the impact of
 collaborative tools and methods that increase social
 connectivity.

 HS.IC.SLE.3Evaluate the social and economic

 IOC-1.C Describe issues that contribute to the digital
 divide.

 11

 implications of privacy in the context of safety, law, or
 ethics.

 STANDARD 11.0 DEMONSTRATE PROGRAM
 ANALYSIS AND DESIGN

 Arizona Computer Science Standards AP CSP Framework

 11.1 Implement the steps in the System
 Development Life Cycle (SDLC) (e.g., planning,
 analysis, design, development, testing,
 implementation, and maintenance)

 HS.AP.PD.3 Document design decisions using text,
 graphics, presentations, and/or demonstrations in the
 development of complex
 Programs.

 CRD-2.E Develop a program using a development
 process. 

 CRD-2.G Describe the purpose of a code segment or
 program by writing documentation.

 11.2 Develop program
 requirements/specifications and a testing plan
 (e.g., user stories, automated testing, and test
 procedures)

 HS.AP.PD.1 Evaluate and refine computational artifacts
 to make them more usable and accessible.

 HS.AP.PD.3 Document design decisions using text,
 graphics, presentations, and/or demonstrations in the
 development of complex
 Programs.

 CRD-2.E Develop a program using a development
 process. 
 CRD-2.F Design a program and its user interface. 

 11. 3 Apply pseudocode or graphical
 representations to plan the structure of a
 program or module (e.g., flowcharting, white
 boarding, and UML)

 HS.DA.CVT.1 Create interactive data
 visualizations using software tools to help others better
 understand real-world phenomena.

 HS.AP.A.1 Create prototypes that use
 algorithms for practical intent, personal expression, or
 to address a societal issue

 HS.AP.PD.3 Document design decisions using text,
 graphics, presentations, and/or demonstrations in the
 development of complex
 Programs.

 CRD-2.G Describe the purpose of a code segment or
 program by writing documentation. 
 CRD-1.A Explain how computing innovations are
 improved through collaboration
 CRD-1.B Explain how computing innovations are
 developed by groups of people.
 AAP-2.B Represent a step-by-step algorithmic
 process using sequential code statements.
 AAP-2.G Express an algorithm that uses selection
 without using a programming language.
 AAP-2.J Express an algorithm that uses iteration
 without using a programming language. 

 11.4 Create and implement basic algorithms HS.AP.M.2 Decompose problems into smaller
 components using constructs such as procedures,
 modules, and/or objects.

 AAP-2.B Represent a step-by-step algorithmic
 process using sequential code statements

 STANDARD 12.0 DEVELOP A PROGRAM Arizona Computer Science Standards AP CSP Framework

 12

 12.1 Use a program editor to enter and modify
 code

 HS.AP.C.2 Use events that initiate instructions to
 design and iteratively develop computational artifacts

 HS.AP.M.2 Use procedures within a program,
 combinations of data and procedures, or independent
 but interrelated programs to design and iteratively
 develop computational artifacts.

 HS.AP.PD.1 Evaluate and refine computational artifacts
 to make them more usable and accessible.

 CRD-2.F Design a program and its user interface

 12.2 Identify correct input/output statements HS.AP.C.2 Use events that initiate instructions to
 design and iteratively develop computational artifacts

 HS.AP.M.2 Use procedures within a program,
 combinations of data and procedures, or independent
 but interrelated programs to design and iteratively
 develop computational artifacts.

 CRD-2.C Identify input(s) to a program. 
 CRD-2.D Identify output(s) produced by a program.

 12.3 Choose the correct method of assigning
 input to variables including data sanitization

 HS.AP.C.2 Use events that initiate instructions to design
 and iteratively develop computational artifacts

 HS.AP.PD.1 Evaluate and refine computational artifacts
 to make them more usable and accessible.

 12.4 Choose the correct method of outputting
 data with formatting and escaping

 HS.AP.C.2 Use events that initiate instructions to design
 and iteratively develop computational artifacts

 12.5 Differentiate between interpreted and
 compiled code (e.g., steps necessary to run
 executable code)

 12.6 Identify the purpose of a build system
 (e.g., make, rake, ant, maven, SCons, and
 grunt)

 12.7 Apply industry standards in documentation
 (e.g., self-documenting code; function-level,
 program-level, and user-level documentation)

 HS.AP.C.2 Use events that initiate instructions to design
 and iteratively develop computational artifacts

 HA.AP.PD.3 Document design decisions using text,
 graphics, presentations, and/or demonstrations in the
 development of complex programs.

 13

 12.8 Name identifiers and formatting code by
 applying recognized conventions

 HA.AP.PD.3 Document design decisions using text,
 graphics, presentations, and/or demonstrations in the
 development of complex programs.

 12.9 Demonstrate refactoring techniques to
 reduce repetitious code and improve
 maintainability

 HS.AP.PD.1 Evaluate and refine computational artifacts
 to make them more usable and accessible.

 HA.AP.PD.3 Document design decisions using text,
 graphics, presentations, and/or demonstrations in the
 development of complex programs.

 AAP-3.B Explain how the use of procedural
 abstraction manages complexity in a program.

 12.10 Demonstrate the use of parameters to
 pass data into program modules

 HS.AP.M.1 Decompose problems into smaller
 components using constructs such as procedures,
 modules, and/or objects.

 HS.AP.M.2 Use procedures within a program,
 combinations of data and procedures, or independent
 but interrelated programs to design and iteratively
 develop
 computational artifacts.

 DAT-2.A Describe what information can be extracted
 from data.
 DAT-2.D Extract information from data using a
 program

 12.11 Demonstrate the use of return values
 from modules

 HS.AP.M.1 Decompose problems into smaller
 components using constructs such as procedures,
 modules, and/or objects.

 HS.AP.M.2 Use procedures within a program,
 combinations of data and procedures, or independent
 but interrelated programs to design and iteratively
 develop

 STANDARD 13.0 TEST AND DEBUG TO
 VERIFY PROGRAM OPERATION

 Arizona Computer Science Standards AP CSP Framework

 13.1 Identify errors in program modules HS.AP.C.2 Use events that initiate instructions to design
 and iteratively develop computational artifacts

 HS.AP.M.2 Use procedures within a program,
 combinations of data and procedures, or independent
 but interrelated programs to design and iteratively
 develop

 HS.AP.PD.1 Evaluate and refine computational artifacts
 to make them more usable and accessible.

 CRD-2.I For errors in an algorithm or program:
 a. Identify the error. 
 b. Correct the error
 CRD-2.J Identify inputs and corresponding expected
 outputs or behaviors that can be used to check the
 correctness of an algorithm or program. 

 14

 13.2 Identify boundary cases and generate
 appropriate test data

 HS.AP.M.2 Use procedures within a program,
 combinations of data and procedures, or independent
 but interrelated programs to design and iteratively
 develop

 HS.AP.PD.1 Evaluate and refine computational artifacts
 to make them more usable and accessible.

 13.3 Perform integration testing including tests
 within a program to protect execution from bad
 input or other run-time errors

 HS.AP.PD.1 Evaluate and refine computational artifacts
 to make them more usable and accessible.

 CRD-2.J Identify inputs and corresponding expected
 outputs or behaviors that can be used to check the
 correctness of an algorithm or program. 
 AAP-4.A For determining the efficiency of an
 algorithm:
 a. Explain the difference between algorithms that run
 in reasonable time and those that do not.
 b. Identify situations where a heuristic solution may
 be more appropriate
 AAP-4.A For determining the efficiency of an
 algorithm: a. Explain the difference between
 algorithms that run in reasonable time and those that
 do not. 1.D b. Identify situations where a heuristic
 solution may be more appropriate

 13.4 Categorize, identify, and correct errors in
 code, including syntax, semantic, logic, and
 runtime

 HS.AP.PD.1 Evaluate and refine computational artifacts
 to make them more usable and accessible.

 CRD-2.I For errors in an algorithm or program:
 a. Identify the error. 
 b. Correct the error
 CRD-2.J Identify inputs and corresponding expected
 outputs or behaviors that can be used to check the
 correctness of an algorithm or program

 13.5 Perform different methods of debugging
 (e.g., hand-trace code and real time debugging
 tools)

 HS.AP.PD.1 Evaluate and refine computational artifacts
 to make them more usable and accessible.

 CRD-2.I For errors in an algorithm or program:
 a. Identify the error. 
 b. Correct the error
 CRD-2.J Identify inputs and corresponding expected
 outputs or behaviors that can be used to check the
 correctness of an algorithm or program

 STANDARD 14.0 UTILIZE AND CREATE
 COMMUNITY RESOURCES

 Arizona Computer Science Standards AP CSP Framework

 14.1 Use standard library functions HS.AP.M.2 Use procedures within a program,
 combinations of data and procedures, or independent
 but interrelated programs to design and iteratively
 develop computational artifacts.

 AAP-3.D Select appropriate libraries or existing code
 segments to use in creating new programs.

 15

 14.2 Find and use third party libraries (e.g.,
 web-based and package managers)

 HS.AP.M.2 Use procedures within a program,
 combinations of data and procedures, or independent
 but interrelated programs to design and iteratively
 develop computational artifacts.

 AAP-3.D Select appropriate libraries or existing code
 segments to use in creating new programs.

 14.3 Explain and interact with an Application
 Program Interface (API)

 HS.AP.M.2 Use procedures within a program,
 combinations of data and procedures, or independent
 but interrelated programs to design and iteratively
 develop computational artifacts.

 AAP-3.D Select appropriate libraries or existing code
 segments to use in creating new programs.

 STANDARD 15.0 USE VERSION CONTROL
 SYSTEMS

 Arizona Computer Science Standards AP CSP Framework

 15.1 Identify the purpose of version control
 systems (e.g., Git and Mercurial)

 15.2 Create a new repository

 15.3 Add, push, and pull source code from
 repository

 15.4 Explain branching and its uses

 15.5 Restore previous versions of code from
 the repository

 STANDARD 16.0 APPLY USER DESIGN
 PRINCIPLES TO INCLUDE WEBSITES AND
 APPLICATIONS

 Arizona Computer Science Standards AP CSP Framework

 16.1 Apply W3C standards and style
 conventions

 16.2 Construct web pages and applications that
 are compliant with ADA and sections 504 and
 508 standards

 16

 16.3 Explain the concept of responsive design
 and applications

 16.4 Employ graphics methods to create
 images at specified locations

 16.5 Choose correct GUI objects for input and
 output of data to the GUI interface (e.g., text
 boxes, labels, radio buttons, check boxes,
 dropdowns, and list boxes)

 HS.AP.C.2 Use events that initiate instructions to design
 and iteratively develop computational artifacts

 STANDARD 17.0 USE AND UPDATE DATA
 STORAGE AND MANAGEMENT

 Arizona Computer Science Standards AP CSP Framework

 17.1 Input/output data from a sequential file or
 database

 HS.DA.CVT.1 Create interactive data
 visualizations using software tools to help others better
 understand real-world phenomena.

 DAT-2.A Describe what information can be extracted
 from data.  
 DAT-2.B Describe what information can be extracted
 from metadata
 DAT-2.D Extract information from data using a
 program.

 17.2 Demonstrate creating, reading, updating,
 and dropping a database

 17.3 Demonstrate the proper use of SQL
 database applications that work with different
 languages (e.g., MongoDB, Microsoft Access,
 Oracle Databases, and Code.org’s App Lab)

 STANDARD 18.0 EMPLOY
 OBJECT-ORIENTED PROGRAMMING
 TECHNIQUES

 Arizona Computer Science Standards AP CSP Framework

 18. 1 Make a distinction between an object and
 a class

 18.2 Differentiate among inheritance,
 composition, and class relationships

 18.3 Instantiate objects from existing classes

 17

 18.4 Read the state of an object by invoking
 accessor methods

 18.5 Change the state of an object by invoking
 a modifier method

 18.6 Determine the requirements for
 constructing new objects by reading the
 documentation

 18.7 Create a user-defined class

 18.8 Create a subclass of an existing class

 18.9 Identify the use of an abstract class as
 opposed to an interface

 18.10 Explain the object-oriented concepts of
 polymorphism, inheritance, and encapsulation

 STANDARD 19.0 EMPLOY RUNTIME AND
 ERROR HANDLING TECHNIQUES

 Arizona Computer Science Standards AP CSP Framework

 19.1 Identify runtime errors

 19.2 Describe error handling strategies

 19.3 Handle unexpected return values

 19.4 Handle (catch) runtime errors and take
 appropriate action

 18

 19.5 Throw standard exception classes

 19.6 Develop and throw custom exception
 classes

 Appendix: Aligning Between Courses
 I am already teaching AP Computer Science Principles or a course aligned with the Arizona Computer Science
 standards - how does this align with the Arizona CTE Standards?

 The Software and App Design CTE standards are intended to cover a 2-year sequence of courses. The chart on the next
 page lists all of the CTE standards that are not addressed in the Arizona Computer Science standards. Many of these
 standards can be addressed in a separate class, taught before or after your current course. The following courses taught
 throughout Arizona address many of the additional CTE standards and can be used as an additional 2nd year course

 - AP Computer Science A
 - Microsoft TEALS Introduction to Computer Science
 - Code.org Computer Science Discoveries
 - Additional courses are listed in the Arizona CS Implementation Guide

 I am already teaching a CTE course - how does this align with the Arizona Computer Science Standards?

 Most CTE standards align with the Arizona Computer Science standards, but there are a few Arizona Computer Science
 standards on the Impact of Computing that do not appear in the CTE standards. You can watch this video on the Impacts
 of Computing standards to learn about additional resources or activities that can be used to supplement your class.

 19

https://apcentral.collegeboard.org/courses/ap-computer-science-a/course
https://www.tealsk12.org/implementation-guide-online/#9
https://code.org/educate/csd
https://www.azed.gov/sites/default/files/2020/02/CS%20Implementation%20Guidance%20Document%20from%20Janice%20Mak%20%28003%29.pdf?id=5e4ed2aa03e2b30558717a38
https://youtu.be/9xDJKSMM8XM
https://youtu.be/9xDJKSMM8XM

 CTE - Software & App Design Standards NOT included in Arizona Computer Science Standards

 4.4 - Identify the correct syntax and safe functions for operations on strings, including length, substring, and concatenation
 4.6 - Research industry relevant programming languages, i.e., Java, JavaScript, and Python
 5.4 - Interpret and construct mathematical formulas
 5.5 - Identify correct and problematic uses of integers, floating-point numbers, and fixed-point numbers in arithmetic
 10.1 - Identify key components and functions of internet and web specialty browsers
 12.5 - Differentiate between interpreted and compiled code (e.g., steps necessary to run executable code)
 15.1 - Identify the purpose of version control systems (e.g., Git, Mercurial)
 15.2 - Create a new repository
 15.3 - Add, push, and pull source code from repository
 15.4 - Explain branching and its uses
 15.5 - Restore previous versions of code from the repository
 16.1 - Apply W3C standards and style conventions
 16.2 - Construct web pages and applications that are compliant with ADA and sections 504 and 508 standards
 16.3 - Explain the concept of responsive design and applications
 16.4 - Employ graphics methods to create images at specified locations
 17.2 - Demonstrate creating, reading, updating, and dropping a database
 17.3 - Demonstrate the proper use of SQL database applications that work with different languages, e.g., MongoDB, Microsoft Access, Oracle Databases, Code.org’s AppLab)
 18.1 - Make a distinction between an object and a class
 18.2 - Differentiate among inheritance, composition, and class relationships
 18.3 - Instantiate objects from existing classes
 18.4 - Read the state of an object by invoking accessor methods
 18.5 - Change the state of an object by invoking a modifier method
 18.6 - Determine the requirements for constructing new objects by reading the documentation
 18.7 - Create a user-defined class
 18.8 - Create a subclass of an existing class
 18.9 - Identify the use of an abstract class as opposed to an interface
 18.1 - Explain the object-oriented concepts of polymorphism, inheritance, and encapsulation
 19.1 - Identify run time errors
 19.2 - Describe error handling strategies
 19.3 - Handle unexpected return values
 19.4 - Handle (catch) run time errors and take appropriate action
 19.5 - Throw standard exception classes
 19.6 - Develop and throw custom exception classes

 20

